1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
| """ @author: xingyu liao @contact: sherlockliao01@gmail.com """
import atexit import bisect from collections import deque
import cv2 import torch import torch.multiprocessing as mp
from fastreid.engine import DefaultPredictor
try: mp.set_start_method('spawn') except RuntimeError: pass
class FeatureExtractionDemo(object): def __init__(self, cfg, parallel=False): """ Args: cfg (CfgNode): parallel (bool) whether to run the model in different processes from visualization.: Useful since the visualization logic can be slow. """ self.cfg = cfg self.parallel = parallel
if parallel: self.num_gpus = torch.cuda.device_count() self.predictor = AsyncPredictor(cfg, self.num_gpus) else: self.predictor = DefaultPredictor(cfg)
def run_on_image(self, original_image): """
Args: original_image (np.ndarray): an image of shape (H, W, C) (in BGR order). This is the format used by OpenCV.
Returns: predictions (np.ndarray): normalized feature of the model. """ original_image = original_image[:, :, ::-1] image = cv2.resize(original_image, tuple(self.cfg.INPUT.SIZE_TEST[::-1]), interpolation=cv2.INTER_CUBIC) image = torch.as_tensor(image.astype("float32").transpose(2, 0, 1))[None] predictions = self.predictor(image) return predictions
def run_on_loader(self, data_loader): if self.parallel: buffer_size = self.predictor.default_buffer_size
batch_data = deque()
for cnt, batch in enumerate(data_loader): batch_data.append(batch) self.predictor.put(batch["images"])
if cnt >= buffer_size: batch = batch_data.popleft() predictions = self.predictor.get() yield predictions, batch["targets"].cpu().numpy(), batch["camids"].cpu().numpy()
while len(batch_data): batch = batch_data.popleft() predictions = self.predictor.get() yield predictions, batch["targets"].cpu().numpy(), batch["camids"].cpu().numpy() else: for batch in data_loader: predictions = self.predictor(batch["images"]) yield predictions, batch["targets"].cpu().numpy(), batch["camids"].cpu().numpy()
class AsyncPredictor: """ A predictor that runs the model asynchronously, possibly on >1 GPUs. Because when the amount of data is large. """
class _StopToken: pass
class _PredictWorker(mp.Process): def __init__(self, cfg, task_queue, result_queue): self.cfg = cfg self.task_queue = task_queue self.result_queue = result_queue super().__init__()
def run(self): predictor = DefaultPredictor(self.cfg)
while True: task = self.task_queue.get() if isinstance(task, AsyncPredictor._StopToken): break idx, data = task result = predictor(data) self.result_queue.put((idx, result))
def __init__(self, cfg, num_gpus: int = 1): """
Args: cfg (CfgNode): num_gpus (int): if 0, will run on CPU """ num_workers = max(num_gpus, 1) self.task_queue = mp.Queue(maxsize=num_workers * 3) self.result_queue = mp.Queue(maxsize=num_workers * 3) self.procs = [] for gpuid in range(max(num_gpus, 1)): cfg = cfg.clone() cfg.defrost() cfg.MODEL.DEVICE = "cuda:{}".format(gpuid) if num_gpus > 0 else "cpu" self.procs.append( AsyncPredictor._PredictWorker(cfg, self.task_queue, self.result_queue) )
self.put_idx = 0 self.get_idx = 0 self.result_rank = [] self.result_data = []
for p in self.procs: p.start()
atexit.register(self.shutdown)
def put(self, image): self.put_idx += 1 self.task_queue.put((self.put_idx, image))
def get(self): self.get_idx += 1 if len(self.result_rank) and self.result_rank[0] == self.get_idx: res = self.result_data[0] del self.result_data[0], self.result_rank[0] return res
while True: idx, res = self.result_queue.get() if idx == self.get_idx: return res insert = bisect.bisect(self.result_rank, idx) self.result_rank.insert(insert, idx) self.result_data.insert(insert, res)
def __len__(self): return self.put_idx - self.get_idx
def __call__(self, image): self.put(image) return self.get()
def shutdown(self): for _ in self.procs: self.task_queue.put(AsyncPredictor._StopToken())
@property def default_buffer_size(self): return len(self.procs) * 5
import argparse import glob import os import sys
import torch.nn.functional as F import cv2 import numpy as np import tqdm from torch.backends import cudnn
sys.path.append('.')
from fastreid.config import get_cfg from fastreid.utils.logger import setup_logger from fastreid.utils.file_io import PathManager
def setup_cfg(args): cfg = get_cfg() cfg.merge_from_file(args.config_file) cfg.merge_from_list(args.opts) cfg.freeze() return cfg
def get_parser(): parser = argparse.ArgumentParser(description="Feature extraction with reid models") parser.add_argument( "--config-file", metavar="FILE", help="path to config file", ) parser.add_argument( "--parallel", action='store_true', help='If use multiprocess for feature extraction.' ) parser.add_argument( "--input", nargs="+", help="A list of space separated input images; " "or a single glob pattern such as 'directory/*.webp'", ) parser.add_argument( "--output", default='demo_output', help='path to save features' ) parser.add_argument( "--opts", help="Modify config options using the command-line 'KEY VALUE' pairs", default=[], nargs=argparse.REMAINDER, ) return parser
def postprocess(features): features = F.normalize(features) features = features.cpu().data.numpy() return features
def get_feature_extractor(model_path="./market_bot_R50.pth",config_file="./configs/Market1501/bagtricks_R50.yml",parallel=False): args = get_parser().parse_args([]) args.config_file= config_file args.opts.extend(["MODEL.WEIGHTS", model_path]) args.parallel = parallel
cfg = setup_cfg(args) return FeatureExtractionDemo(cfg, parallel=args.parallel)
|